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Abstract
Epigenetic mechanisms play an important role in the regulation of cell type-specific gene activities, yet how epigen-
etic patterns are established and maintained remains poorly understood. Recent studies have supported a role
of DNA sequences in recruitment of epigenetic regulators. Alignment-free methods have been applied to identify
distinct sequence features that are associated with epigenetic patterns and to predict epigenomic profiles. Here,
we review recent advances in such applications, including the methods to map DNA sequence to feature space,
sequence comparison and prediction models. Computational studies using these methods have provided important
insights into the epigenetic regulatory mechanisms.
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INTRODUCTION
A fundamental biological question is to understand

the function of the genome. Recent work has shown

that the majority of the genome may be functional

[1]. However, comprehensive functional annota-

tion of the genome remains a daunting task.

Development of computational methods has been

essential for functional annotation. In particular, it

has been a long tradition to use sequence alignment

methods, such as BLAST [2] and FASTA [3], to

generate initial biological hypotheses. In the past

few years, the computational efficiency of sequence

alignment has been improved greatly, enabling the

rapid processing of large amounts of sequences [4,5].

Although the power of alignment-based methods

has been well-demonstrated in a broad range of

applications, their applications are not unlimited.

When using a sequence-alignment method, one

must make two basic assumptions:

(i) The functional elements share common

sequence features; and

(ii) The relative order of these elements is conserved

between different sequences.

However, the latter assumption is often violated

for cis-regulatory elements, where there is little evi-

dence suggesting the order between different elem-

ents would have any significant effect in regulating

gene expression. In fact, many important regulatory

elements are distal to transcription start sites, and it

is the three-dimensional chromatin structure that

facilitates their regulatory interactions [6]. As such,

the recently developed alignment-free methods [7]

have emerged as a promising approach to investigate

the regulatory genome.

During the past decade, epigenetics has become

increasingly recognized as an important layer of

control of gene activities. Epigenetic regulation

refers to heritable changes of gene expression that

occur without alteration of the DNA base sequence

[8]. Using an analogy, we can think that the genomic

DNA represents all the potential functions of the

‘software of the cell’, while the epigenetic
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mechanisms dictate some control on which features

are enabled/disabled in each particular cell type,

specializing this ‘software’.

While epigenetics and genetics were studied in

isolation in early studies, recent studies have shown

that they are indeed closely related [9]. It has been

increasingly recognized that the genomic sequence

plays an important role in guiding epigenetic pattern

specificity. However, a major challenge is that,

unlike transcription factors (TFs), most epigenetic

factors do not or weakly interact with the DNA.

While epigenetic factors can be brought to specific

DNA sequences through interaction with TFs, they

rarely have unique interacting factors [10]. As a

result, their association with DNA sequence patterns

is, in general, much weaker than TFs.

An emerging field of research is to apply align-

ment-free methods to study the link between the

genome and epigenome. In particular, a number of

alignment-free methods have been previously used

to predict genome-wide epigenetic patterns and to

identify the sequence elements that play a regulatory

role in establishing epigenetic patterns. In this article,

we review recent progress in this exciting direction.

EPIGENETICS PATTERNANDDNA
SEQUENCES
Epigenetic mechanisms include nucleosome

positioning, histone modifications and DNA methy-

lation. The primary repeating unit of chromatin

is the nucleosome, which consists of 147 bp of

DNA wrapped 1.67 times around an octamer of

core histone proteins [11]. The N-terminal ends

of the histones are unstructured and called the

histone tails. Many amino acid residues on the

histone tails can be covalently modified, and many

of these modifications have distinct biological func-

tions [12]. An important task is to characterize the

biological function of the combinatorial states of

multiple histone marks [12]. Covalent modification

can also occur at the DNA level [13], where the

cytosine nucleotide can be methylated at the 50

position.

The field of epigenomics has been growing rapidly

in the past few years, in part because of the devel-

opment of genome-wide profiling technologies

[14–19] and new specialized computational

approaches [20–22]. Previous studies have identified

strong relationship between epigenetic patterns, TF

binding and downstream gene activities. Dynamic

changes of epigenetic patterns are strongly associated

with developmental control, environmental response

and disease susceptibilities. Several computational

approaches have been developed to characterize

the genome-wide chromatin states [23–28]. Insights

obtained from these studies have been essential for

developing new therapeutic approaches [29].

The underlying mechanisms for the establishment

and maintenance of cell type-specific epigenetic

patterns are complex and involve the dynamic inter-

actions among multiple classes of factors, including

chromatin modifiers, DNA binding proteins, non-

coding RNAs and signaling molecules [10,30].

However, the relative contribution of each factor

remains poorly understood. One fundamental ques-

tion is to what extent the epigenomic patterns are

orchestrated by the underlying DNA sequence.

Previous studies have shown that, at least for a

subset of epigenetic marks, the DNA sequence

plays an important role in targeted recruitment to

specific genomic regions [31]. Distinct DNA

sequence features have been identified to be asso-

ciated with nucleosome positioning [32], DNA

methylation [33] and histone modifications [34],

and methods have been developed to predict

genome-wide patterns, sometimes with great accur-

acy. Such a strong association with DNA sequence

features may be surprising at first sight, but it is not

incompatible with the fundamental property that

epigenetic patterns may change without change of

DNA sequences. What this means is that the DNA

sequence may mark specific regions where epigen-

etic pattern changes are likely to occur, but the cell

type-specific patterns still depend on the activities of

chromatin regulators and mediating TFs, which may

be further regulated by inputs from various signaling

pathways or other mechanisms. Interestingly, the

most informative sequence features are those that

are traditionally viewed as ‘degenerative’, such as

CpG density and poly-A tract [9], posing a severe

challenge for alignment-based methods. In the

meantime, the development of alignment-free

methods has provided a promising alternative to

overcoming such challenges.

MAPPING SEQUENCETO FEATURE
SPACE
To identify common sequence features associated

with an epigenetic pattern, a major task is to

compare multiple DNA sequences. Traditionally,
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sequence comparison is achieved by multiple

sequence alignment and quantified by a quality

score [35]. However, it is infeasible to align a large

set of sequences because of overwhelming computa-

tional cost. Furthermore, for sequence-alignment

methods to be effective, one must assume that the

underlying sequences are highly conserved, which is

often violated in epigenomics.

In contrast, alignment-free methods make no

assumption regarding sequence conservation or the

order between elements [7]. To compare different

sequences, a first step is to project each sequence

into a suitably selected feature space, where sequence

information is transformed to numerical information,

thereby enabling the application of various estab-

lished mathematical and probabilistic tools for

comparison.

In particular, a DNA sequence s is represented as

a string of L symbols from a finite alphabet � of

length r. We indicate as �� the set of all the strings

that can be obtained by finite successions of symbols

in the alphabet �. Any generic string s is mapped to

a vector xs ¼ ’ sð Þ (the feature vector) by a particular

mapping function ’ :
P�
! F, allowing a represen-

tation of s into a multidimensional space (the feature

space) F, where a particular distance function

between the vectors can be adopted to reflect the

observed similarities between sequences. Here we

summarize a few commonly used representations of

feature spaces.

Mapping by word composition and
k-mers
One of the most common ways of defining sequence

features is by enumerating the frequency of occur-

rence of a finite set of preselected words. The

simplest and most common choice of word list is

k-mers, i.e. any string of length k whose symbols

are taken in the oligonucleotide alphabet

(A,T,C,G). In this case, each sequence s is mapped

to a vector in a 4k dimensional feature space.

In general, each numerical component xis of the

feature vector is set to the value f si that represents

the frequency of the i-th k-mer wi in s, each one

counted by a sliding window of length k that is run

through the sequence s, from position 1 to L� kþ 1.

Another possible choice is to set xis to the empirical

probability psi ¼ f si = L � kþ 1ð Þ, leading to the appli-

cation of information-based distances.

The mapping of sequences to the space of k-mers

is widely used in epigenetic context; it has been used

to study the nucleosome positioning [36–38], to

characterize the complexity of the sequence asso-

ciated with particular histone modifications [39], to

predict histone modification patterns [40] and to pre-

dict DNA methylation patterns [41–43].

Mapping to suffix tree
Because of the large number of possible k-mers, it is

often desirable to reduce the complexity by selecting

a subset of k-mers for detailed analysis. One of the

commonly used techniques to achieve this goal is to

use efficient data structures for string operations like

suffix tree [44], Burrows–Wheeler transform [45],

suffix array [46] and compressed index [47].

A suffix tree T of a string s on a finite alphabet
P

is defined as a tree containing all the suffixes of s.
In particular, each suffix of s corresponds to one path

in T. Given a generic string s of length Ls, its suffix

tree can be constructed in linear time O(Ls) and the

search of any string t with length Lt�Ls in s is O(Lt)
(this result holds also for a finite number of mis-

matches in t). For these reasons suffix trees and

related data structures are widely used in sequence-

alignment software, such as BWA [48] and

BOWTIE [49]. In contrast, in the alignment-free

context these structures are used to efficiently evalu-

ate distances or similarity measures based on word

composition, where the computational cost scales

linearly with respect to the word length. Of particu-

lar interest is a distance function proposed by

Apostolico et al. [50] based on the enumeration of

all the possible k-mers of different and finite length

in linear time. A similar idea is used by another study,

which defines a general similarity measure [51]. In

particular, this measure does not compute all the

possible k-mers present in the sequences, but instead

calculates only the optimal word length to use. In

addition, suffix trees have been used to define

distance functions based on compressibility by exten-

sible motifs, i.e. motifs that may contain a finite

number of gaps [52].

Suffix trees have been used in the context of epi-

genomics, for example, to predict hypomethylated

regions and CpG islands using hexamer alphabets

[53] and to investigate the DNA sequence period-

icity associated with nucleosome positioning [54]. In

the latter study, Rasheed et al. [55]applied suffix trees

to detect repeating dinucleotide subsequences in

nucleosomal DNA, using as input a list of known

chicken and yeast nucleosomal DNA sequences in

the literature. Random sequences extracted from
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the respective genomes are used as control.

Periodicity is detected by searching for subsequences

containing recurrent dinucleotides at the following

positions:

i, iþ p�W, iþ 2 � p�W, . . . , iþ j � p�W

where p is the period, i a position in the sequence, j an
integer and W is the width of the sliding window.

They found that around 90% of the nucleosome

sequences contain periodic subsequences accordingly

to the above criterion, while only 10% of the random

sequences have such a property. In this application,

the application of suffix tree is essential for achieving

sufficient numerical efficiency.

Mapping into spatially extended signal
space
A sequence s of length L can also be mapped into a

spatially extended signal space. Starting from a finite

set of n fixed word length segments wi, the compo-

nent xis is a one-dimensional binary digital signal

defined by:

xis tð Þ ¼
1 ststþ1 . . . stþk ¼ wi

0 otherwise

�

where k is the length of wi.

An advantage of using this kind of representation

is that it takes into account the spatial ‘shape’, which

may have favorable binding energy. There are a large

number of digital signal processing techniques like

convolution, classical Fourier or wavelet analysis

that can be used to discover spatially extended

patterns.

In the particular problem of nucleosome position-

ing prediction, the signal representation has shown

particular merits. Starting from a training set of

nucleosome sequences, the probability density Pwi

of a dinucleotide wi at each position of a sequence

underlying a nucleosome is estimated. Finally, a

convolution operation between Pwj and xjs is used

to score if s underlies a nucleosome [56].

A wavelet transform is a decomposition of a

spatially extended signal into the space–frequency

domain via a set of basis functions, each related to

a common function, called the mother wavelet, by

scaling and translation. Wavelet transforms can be

viewed as an extension of traditional Fourier analysis

in that the signal of interest does not need to be

periodic. Yet, similar to Fourier analysis, wavelet

methods can be used to systematically investigate

the shape of a signal in terms of different frequencies.

Wavelet methods have been widely used in many

areas of science and engineering [57].

To study the role of DNA sequence periodicity in

determining nucleosome positioning, Yuan and Liu

[37] applied wavelet analysis to predict nucleosome

positioning in yeast by analyzing the DNA sequence

information from 199 nucleosomal sequences and

296 linker sequences known in the literature

[37,55]. They further truncated each input nucleo-

some or linker DNA sequence s to 129 bp long.

Dinucleotide frequencies, wi are transformed to

wavelet coefficients xis for i¼ 1, . . . ,16 using the

Haar wavelet basis, defined as

� tð Þ ¼
1 for 0 < t < 1=2
�1 for 1=2 < t < 1

0 otherwise

8<
:

This transform involves seven layers of wavelets, each

layer corresponding to a specific length scale. The

sum of square of the wavelet coefficients at

each layer, also called the wavelet energy, is then

used to summarize the sequence features with the

aim to quantify the contribution of different spatial

frequencies. They find modest prediction power

(AUC¼ 0.84) in predicting nucleosome positioning,

but the nucleosome-depleted regions are highly

predictable.

A major benefit of the wavelet approach is its

ability to detect position-specific signals across

multiple length scales, allowing combinations of

both small-scale and large-scale motifs to contribute

to the overall targeting signal. To date, the wavelet

approach has only been applied to investigate the

spatial distribution of dinucleotides. In general this

can be naturally extended to longer k-mers, but

there is an additional computational cost compared

with simply using word counts.

COMPARISONOF SEQUENCES IN
THE FEATURE SPACE
Once DNA sequences are mapped to numerical

vectors in a feature space F, they can be easily com-

pared by using traditional mathematical tools, such

as a distance or dissimilarity function, d, which is a

two-variable function on F satisfying the following

conditions:

(1) d(x,y)� 0

(2) d(x,y)¼ d(y,x)

(3) d(x,x)¼ 0
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Generally speaking, there are three main classes

of distance functions that have been applied to

epigenetic studies: geometrical, correlation and

information-based distances.

Geometrical distance functions capture the con-

cept of physical distance between two objects.

They are strongly influenced by the magnitude of

changes in the measured components of vectors x
and y, making them sensitive to noise and outliers.

The most adopted geometrical distance is the

‘Euclidean distance’:

de x,yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� yð Þ x� yð Þ

t
q

Correlation distance functions capture linear depen-

dencies between the coordinates of two vectors. The

most adopted distance belonging to this class is the

‘Pearson’s correlation distance’:

dr x,yð Þ ¼ 1� rx,y
��� ���

where rx,y is the Pearson correlation between x and y.
Information-based distance functions are defined

via well-known quantities in information theory,

such as entropy or relative entropy. They have

the advantage of capturing nonlinear statistical

dependencies between two discrete variables.

The entropy measures the degree of uncertainty

associated with a random variable and typically is

represented in units of bits. The mathematical defin-

ition is as follows.

Given a multivariate random variable Xwith pos-

sible values {x1,. . ., xn} and its associated probability

mass function P(X), the entropy is defined as

H Xð Þ ¼ �
Xn
i¼1

pXi log2 pXi
� �

where pxi ¼ P xið Þ.
The concept of entropy can be extended to

‘relative entropy’ or ‘Kullback–Leibler divergence’,

which quantifies the similarity between two random

variables X and Y:

RH X,Yð Þ ¼
Xn
i¼1

pXi log2

pXi
pYi

� �

While relative entropy is not symmetric, it can be

symmetrized by the following transformation:

dkl X,Yð Þ ¼
RH X,Yð Þ þ RH Y,Xð Þ

2

and the result is called the Kullback–Leibler distance.

To evaluate the Kullback–Leibler distance between

a pair of DNA sequences, the occurrence of each

k-mer is viewed as a random variable following a

binomial distribution whose parameter is estimated

by its overall frequency.

The idea described above has been used to define

an unbiased quantitative measure for DNA sequence

specificity called the Motif Independent Measure

(MIM) [39]. Starting from a set of random sequences,

the method uses their empirical probabilities of k-
mers (default k¼ 4) to estimate their Kullback–

Leibler divergence distribution, and uses this distri-

bution as the null model to establish the level of

specificity. Of note, this approach does not assume

the existence of any distinct sequence motif. The

authors apply this approach to analyze a published

ChIP-seq dataset of the enhancer mark H3K4me1

[1,58,59]. They find that the sequence specificity

associated with the H3K4me1 peaks is highly cell

type-specific, which is highest in embryonic stem

cells, suggesting different targeting mechanisms. Of

note, no distinct motif sequences are identified in the

H3K4me1 targets, suggesting a motif-independent

utility of this approach in evaluating sequence

specificity.

The concept of entropy has also been applied to

investigate the relationship between nucleosome

positioning and DNA sequences. For example,

Levitsky et al. [60] identify differences in entropy

levels between different classes of nucleosomal

DNA sequences, which may be associated with

conformational and physicochemical property differ-

ences, based on analysis of an existing nucleosome

sequence database [61].

Kernels for sequences comparison
Another class of sequence comparison methods is the

string kernels, which have recently gained significant

popularity and been successfully applied to a wide

range of problems [62,63].

Consider two generic sequences s and t, and a

generic feature space F where an inner product is

defined, a kernel is any K :
P�
�
P�
! < such

that there exists a mapping ’ :
P�
! F satisfying:

K s,tð Þ ¼ ’ sð Þ,’ tð Þ
	 


where �,�h i denotes the inner product in F.

Classical examples of kernels are:

K x,yð Þ ¼ xtyþ c Linear
K x,yð Þ ¼ axtyþ cð Þ

d Polynomial
K x,yð Þ ¼ e� g jx�y jð Þ Gaussian
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It is straightforward to transform a kernel to a

distance function, as follows:

dK s,tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K s,sð Þ þ K t,tð Þ � 2K s,tð Þ

p
In computational biology, a popular choice is sub-

sequence kernel, which is defined in a number of

steps. First, given a sequence s ¼ s1s2 . . . sL, the

indexset i ¼ i1i2 . . . il of length l is defined as a mono-

tonically increasing set of positive integers whose

values are no greater than L. Denote by

s½i	 ¼ si1si2 . . . sil the subsequence (allowing gaps) of

s that corresponds to the index set. Second, each

index set i is associated with a gap-penalizing

weight, ll ið Þ, where l ið Þ ¼ il � i1 þ 1 and l< 1 is a

predetermined constant. Third, the sequence s is

mapped into a �j jm dimensional feature space

through the following mapping:

’u sð Þ ¼
X
i:s½i	¼u

ll ið Þ

for every subsequence u of length m. Finally, the

subsequence kernel is defined as the dot product

between any pair of sequences:

Km s,tð Þ ¼
X
u2 �j jm

X
i:s½i	¼u

X
j:t½j	¼u

ll ið Þþl jð Þ

As such, indels are tolerated yet penalized in a suit-

able manner.

Because of the poor numerical efficiency, effort

has been taken to develop a more efficient algorithm

based on recursive strategies. As a result, the numer-

ical complexity is improved to O(mLsLt) [64], where

Ls and Lt are the lengths of the two considered

sequences.

Sequence comparison using complexity/
compression measures
Another class of distance functions has been

recently introduced based on an extension of the

Kolmogorov complexity, which intuitively can be

viewed as a measure of the computational resources

needed to generate such sequences. The mathemat-

ical definition is as follows.

The conditional Kolmogorov complexity KC sjtð Þ
between two generic strings s and t is the length

of the shortest binary program written in a generic

programming language that computes s giving t as

input. The Kolmogorov complexity KC sð Þ of a

string s is defined as KC sjlð Þ where l stands for

the empty string.

Li et al. [65] define the universal similarity metric

(USM) for strings based on the Kolmogorov

complexity:

USM x,yð Þ ¼
max KC sjt�ð Þ,KC tjs�ð Þ

� �
max KC sð Þ,KC tð Þ

� �
where w� denotes the shortest program that produces

the generic sequence w on an empty input. USM

represents a lower bound for all the distance and

similarity functions.

It is difficult to exactly compute the value of

USM; therefore, it is commonly approximated by

the following formula:

UCD s,tð Þ ¼
max C stð Þ

�� ��� C sð Þ
�� ��, C tsð Þ

�� ��� C tð Þ
�� ��� �

max C sð Þ
�� ��, C tð Þ

�� ��� �
where st and ts denote the concatenations of the

sequences s and t, C is a compression algorithm

and C(s) its output on a string s. Details about this

approximation can be found in the work of

Ferragina et al. [66]. Complexity-based approaches

have been used, for example, to distinguish nucleo-

some-enriched and -depleted regions [67].

PREDICTIONOF EPIGENETIC
PATTERNS IN SEQUENCE
FEATURE SPACE
While epigenetic patterns are typically not strongly

associated with any distinct DNA sequence features,

accurate prediction models have been built by com-

bining multiple sequence features. There are three

main classes of approaches, as described below.

Regressors and classifiers
Regression analysis is the process of determining

how a variable y (the response) is related to a multi-

variate variable X (whose components are called

covariates). Assuming that y and X are associated

via a prespecified, possibly nonlinear functional rela-

tionship y¼h(X, b) with an unknown coefficient b,

the regression procedure infers the values of b based

on a finite number of observed data. Classification is

similar to regression but for discrete values of y. The

choice of a particular function form of h is related to

the so called empirical risk:

Re ¼
1

m

Xm
i¼1

L
�
h Xið Þ,yi

�

where L x,yð Þ is the loss function such that it is

non-negative and L x,xð Þ ¼ 0. Empirical risk

424 Pinello et al.
 at H

arvard L
ibrary on O

ctober 23, 2014
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

-
Due
 to
recently 
programt
 for short
The 
,
by
Classifiers
-
,
http://bib.oxfordjournals.org/


minimization is the process of choosing a function ĥ
that minimizes the empirical risk:

ĥ ¼ argminh2H Re hð Þ

where H is a particular class of function. In binary

classifications, the linear hyperplanes btX can be used

to define the set H of binary linear classifier as:

H ¼ sgn btX
� �

: b 2 <n� �
A commonly used regressor is the logistic regression

(LR), which is a member of the generalized linear

models suitable for binary responses [68]. In LR

one obtains the logarithm of the odds of the success

outcome, and finally uses a log-linear model:

ln
p

1� p

� �
¼
X
j

bjxj

where p represents the probability of the success out-

come, xj represents the covariate values, and the bjs are

unknown coefficients that are numerically estimated,

often with the maximum likelihood procedure.

In the context of epigenomics, Yuan and Liu [37]

use wavelet energies as covariates of an LR model to

predict the likelihood of an arbitrary sequence being

classified as a nucleosomal or a linker sequence. They

find that the genome-wide nucleosome-depleted

regions can be predicted with high accuracy from

the DNA sequence alone.

In Yang et al. [41] an LR model, based on k-mers,

is used to study cell type-specific DNA methylation

susceptibility at three different resolutions: pro-

moters, CpG dinucleotides and CpG segments.

They predict, with reasonable accuracy, methylation

patterns across different human cell types.

Furthermore, they also identify k-mers that partially

explain the tissue-specific methylation patterns.

Support vector machines
Support vector machines (SVMs) [69] are binary

linear classifiers. They search for the optimal hyper-

plane ĥ that maximizes the geometric margin, which

is the distance of the hyperplane to the nearest train-

ing data point of any class. The main advantage

of SVM is that it provides a solution to the global

optimization problem, thereby reducing the gener-

alization error of the classifier.

The formulation of SVM can be easily extended

to build a nonlinear classifier by incorporating a

generic kernel of the class H:

H ¼ sgn K b,Xð Þð Þ : b 2 <n� �

While no systematic tools have been developed

to automatically identify the optimal kernel for a

particular application, intuition-based kernel designs

often seem to be sufficient in practice.

Peckham et al. [36] have applied SVM to predict

nucleosome positions in yeast from DNA sequences

using genome-scale nucleosome positioning infor-

mation identified by a tiling array experiment [20].

In particular, each input sequence is represented

by k-mers with lengths up to 6 bp, using a linear

kernel. Genome-wide nucleosome positions are pre-

dicted using a hidden Markov model to detect peaks

of the SVM-predicted scores. Similarly, using a linear

kernel, SVM has also been applied to predict histone

modifications patterns [40].

In addition, Lee et al. [70] have applied SVM to

predict enhancer locations. In this study, they used

ChIP-seq data of EP300/CREBBP [71] to define

enhancers, and also used a linear kernel for predic-

tion. Interestingly, a subset of the identified sequence

elements can be associated to sequence motifs of TFs

that are known to play a tissue or developmental

stage-specific role in gene regulation.

Classification trees and random forests
Classification trees are complex classifiers based on the

idea of representing the function h as a set of discrim-

ination rules in a feature space in term of discrete data

structures called rooted trees [72]. A rooted tree is a

direct and acyclic graph composed of a set of nodes

and a set of paths that connect the nodes. The root is a

special node where all paths ultimately originate from,

whereas the leaf nodes are where the paths terminate.

Each node represents a binary rule that splits the

feature space according to the value of a predictive

feature, and a path from the root to leaf nodes repre-

sents a series of rules that are used to recursively divide

the feature space into smaller subspaces, where a

common class label is assigned. This approach can

also be extended using an ensemble of trees, called

forests, to make classification, and the results from

individual trees are aggregated, for example, by

majority voting. The most used methods in this con-

text are decision trees [73], random forests [74] and

probabilistic sum of trees [75]. The tree-based models

have been used successfully, for example, to predict

target regions of a chromatin remodeling complex

based on TF binding and motif sequences [76] or

for the identification of DNA binding protein [77].

An ensemble version of classification trees, called

the Bayesian additive regression trees (BART), has
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been developed by Chipman et al. [75]. Previous

work has shown that the BART model has competi-

tive performance with other methods, such as SVMs

[78]. An advantage of BART is that, by enumerating

the frequency of usage of each predicting variable, it

can serve as an effective way for variable selection.

Liu et al. [76] apply the BART model to predict

the genome-wide polycomb target genes in mouse

embryonic stem cells. The Polycomb group

complexes (PRC1 and PRC2) are responsible for

synthesizing the repressive H3K27me3 mark and

play an important role in development. ChIP-chip

experiments identify nearly 3000 genes whose

promoters are occupied by PRC2 complex in

mouse embryonic stem cells; these target genes are

highly enriched for developmental regulators, which

are activated during cell differentiation in a cell type-

specific manner. Using the BART model, Liu et al.
[76] compare the promoter sequences of the target

and nontarget genes and find that the model has

good classification accuracy (AUC¼ 0.83).

There are a number of variations of tree-based

models in the literature using different learning

strategies and, as a result, the computational complex-

ities are very different. For example, classic

approaches like the ID3 or C4.5 [79] have a complex-

ity of O(n2 m) in the case of n discrete features or

O(n2 m3) for n continuous features [80]. Random for-

ests instead have a complexity of O(tnmlogm), where t
is the number of trees in the forest. The complexity of

the BART approach instead is dominated by the

Markov chain Monte Carlo sampling, which has

been shown to have, in the case of large samples, a

stochastic complexity of O(n2) [81]) and is O(t m n2).
In contrast, the complexities of SVM and LR can

be highly variable depending on the specific opti-

mization problem. Fast implementation of the LR

optimizer involves a computation that is O(mn2) [82].

In the case of SVM, the optimization problem is a

quadratic-programming one, and it is noteworthy

that the best solvers have O(m3) complexity [83], in

addition to the cost, k(n), associated with the precom-

putation of the kernel matrix. For the linear kernel,

k(n) is equal to n2, but this cost can be significantly

greater for more complex kernels. Numerically effi-

cient implementations have been developed [83].

To date, effective prediction models have been

developed for nucleosome positioning, histone modi-

fication and DNA methylation, providing strong evi-

dence that DNA sequence plays an important role

in guiding these factors. A summary of the methods

discussed in this article is presented in Table 1.

As summarized in Table 2, each method has

its strengths and weaknesses. For example, SVM

models provide usually highly competitive predic-

tion accuracies, but the results are often difficult to

interpret in terms of the underlying features. On the

other hand, the tree-based models may perform less

efficiently in terms of prediction accuracy, but their

results can be easily interpreted. Furthermore, some

methods, such as LR, are more numerically effective

than others, although not parallelizable. These prop-

erties should be taken into consideration for model

selection.

Table 1: A summary of alignment-freemethods that either have been applied to epigenomics or may be suitable for
epigenomics

Epigenetic mark Feature space mapping Similarity/distance function Prediction model

Nucleosome
positioning/occupancy

Word composition [36,37,38]

Suffix tree [54]

Signal space [37,56]

Entropy [37,60]

Kernel [36]

Information based

Complexity based [67]

Logistic regression [37]

Support vectormachine [36]

Treemodels

DNA methylation Word composition [41,42,43]

Suffix tree [53]

Signal space

Entropy

Kernel [43]

Information based

Complexity based

LR [41,43]

Support vectormachine [43]

Treemodels

Histone modifications/
chromatin regulatory
elements (enhancers)

Word composition [39,40,70,76,34]

Suffix tree

Signal space

Entropy

Kernel [40,70]

Information based

Complexity based

LR [34]

Support vectormachine [70,40]

Treemodels [76]
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DISCUSSION
In this article, we have reviewed a number of recent

applications of the alignment-free methods to epige-

nomics, whose connection with the DNA sequences

has not been well recognized until recently. Because

of the limit of space and our knowledge, we have

only touched upon a small set of existing studies and

apologize for the omission of any important studies.

Nonetheless, it is evident that the alignment-free

methods have offered new biological insights into

DNA methylation patterns [41–43], histone modifi-

cations [70] and nucleosome positioning [37,38]. We

think that the power of alignment-free methods

mainly lies on their flexibility, robustness and numer-

ical efficiency.

Most previous studies either focus on a specific

epigenetic mark or consider different marks inde-

pendently, but in reality there is often strong associ-

ation between different marks. For example, it is well

known that nucleosome positioning influences DNA

methylation patterns [84]. Similarly, DNA methyla-

tion is known to be positively correlated with H3K9

methylations and negatively correlated with H3K4

and H3K27 methylations [17,85]. Taking these cor-

relations into account may result in more powerful

predictive models.

The DNA sequence is only one of many factors

that affect epigenetic patterns. The effect of

additional factors, such as transcription, replication

and histone-mediated self-propagation, varies greatly

among different epigenetic marks, providing an

intrinsic limit for any sequence-based prediction

model. One important question is whether the lack

of prediction power is because of the inferiority of

computational method or such intrinsic limitations.

This is in part addressed by the MIM method [39],

but more study is warranted.

It is important to recognize that correlation is not

equivalent to causal mechanisms. Causal relationship

can only be established if it can be demonstrated that

perturbation of the potential effector indeed has the

predicted effect. To test whether a predicted DNA

element is required for the establishment of epigen-

etic pattern, the most direct way is to genetically

delete the element in question from the genome

and then use a suitable experimental assay to evaluate

whether the local epigenetic pattern changes as

predicted. Recently developed genome-editing

tools, such as TALEN [86] and CRISPR [87], are

extremely useful for such validations.

CONCLUSIONS
Alignment-free methods have provided important

computational tools for functional annotation of

biological genome and for linking genome with

epigenome. Conversely, the applications themselves

have also provided important insights that can be

used to develop more accurate and efficient meth-

ods. Close interactions between computational and

experimental biologists will likely result in significant

advances in both frontiers.

Key Points


 There has been a lot of progress in applications of alignment-free
methods to study the link between the genome and epigenome.


 Feature space representation enables the detection of weakly
associated sequence features.


 Alignment-freemethods are useful for prediction of epigenomic
patterns.


 Different alignment-free methods have different strengths and
weaknesses.
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Table 2: A comparison of prediction models that have been applied to epigenomics

Prediction model Time complexity Parallelizable Easy to interpret

SVM/kernel based O(m3) for the QP solver and O(k(n)) for the computation
of the kernel matrix, where k(n) is the computational
cost of the kernel used

Yes No

LR O(m n2) No Yes: it is easy to check the contribution of
each feature in the model.

Tree based 
 ID3 or C4.5: O(n2m) discrete features,O(n2m3)
continuos features


 BART: O(tmn2)

 Random Forest: O(tnmlogm)

Yes Yes: it is easy to check the contribution of
each feature and also combinatiorial
rules in the features space.
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